MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Doppler channel emulation of high-bandwidth signals

Author(s)
Colosimo, Joseph William
Thumbnail
DownloadFull printable version (1.428Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Aradhana Narula-Tam and Muriel Medard.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The Airborne Networks Group at MIT Lincoln Laboratory has funded the construction of a channel emulator capable of applying, in real-time, environmental models to communications equipment in order to test the robustness of new wireless communications algorithms in development. Specific design goals for the new emulator included support for higher bandwidth capabilities than commercial channel emulators and the creation of a flexible framework for future implementation of more complex channel models. Following construction of the emulator's framework, a module capable of applying Doppler shifting to the input signal was created and tested using DVB-S2 satellite modems. Testing not only verified the functionality of the emulator but also showed that DVB-S2 modems are unequipped to handle the continuous spectral frequency shifts due to the Doppler effect. The emulator framework has considerable room for growth, both in terms of implementing new channel transformation models as well as the re-implementation of the emulator on custom hardware for emulation of channels with wider bandwidths, more complex noise sources, or platform-dependent spatial blockage effects.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (page 97).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85698
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.