MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic traffic congestion pricing mechanism with user-centric considerations

Author(s)
Bui, Kim Thien
Thumbnail
DownloadFull printable version (7.168Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
Emilio Frazzoli.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we consider the problem of designing real-time traffic routing systems in urban areas. Optimal dynamic routing for multiple passengers is known to be computationally hard due to its combinatorial nature. To overcome this difficulty, we propose a novel mechanism called User-Centric Dynamic Pricing (UCDP) based on recent advances in algorithmic mechanism design. The mechanism allows for congestion-free traffic in general road networks with heterogeneous users, while satisfying each user's travel preference. The mechanism first informs whether a passenger should use public transportation or the road network. In the latter case, a passenger reports his maximum accepted travel time with a lower bound announced publicly by the road authority. The mechanism then assigns the passenger a path that matches with his preference given the current traffic condition in the network. The proposed mechanism introduces a fairness constrained shortest path (FCSP) problem with a special structure, thus enabling polynomial time computation of path allocation that maximizes the sequential social surplus and guarantees fairness among passengers. The tolls of paths are then computed according to marginal cost payments. We show that reporting true preference is a weakly dominant strategy. The performance of the proposed mechanism is demonstrated on several simulated routing experiments in comparison to user equilibrium and system optimum.
Description
Thesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 85-95).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/85817
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.