MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling and interpreting the observed effects of ash on diesel particulate filter performance and regeneration

Author(s)
Wang, Yujun, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (20.48Mb)
Alternative title
Observed effects of ash on DPF filter performance and regeneration
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Victor W. Wong.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Diesel particulate filters (DPF) are devices that physically capture diesel particulates to prevent their release to the atmosphere. Diesel particulate filters have seen widespread use in on- and off-road applications as an effective means for meeting increasingly stringent particle emissions regulations. Although the soot deposit can be removed by regeneration, the incombustible material - ash, primarily derived from metallic additives in the engine lubricant, accumulates in the DPF channels with the increasing vehicle mileage or equivalent running hours. Ash accumulation inside filter increases the flow restriction and reduces the filter soot storage capacity, which results in higher filter regeneration frequencies and larger engine fuel penalty. Combined with experimental observations, DPF models are built to investigate the fundamental mechanisms of DPF aging process. The DPF soot and ash loading model, based on porous media filtration theory, is applied to understand the soot deposition across the substrate wall with soot and ash cake layer formation. DPF models are also used to investigate the process of ash transport and catalyst deactivation with increasing ash load level. DPF ash aging is found to have negative effect on passive regeneration due to the catalyst deactivation and diffusion resistance of ash cake layer. Besides, at given amount of ash load, the effects of ash spatial distribution on DPF performance are studied via simulation. It is found that the ash end plug has significant influences on DPF pressure drop while ash radial and axial distributions have minor effects. At known ash and substrate property, DPF performance can be optimized according the sensitivity map developed from this study. DPF model is beneficial to interpret the experimental observations and it is applied to predict the effects of certain factors, like flow rate and deposit level, on DPF performance. At the same time, modeling results are useful in optimizing the design of the combined engine-aftertreatment-lubricant system for future diesel engines and in understanding the requirements for robust aftertreatment systems.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 123-130).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/87985
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.