Show simple item record

dc.contributor.advisorChristine Ortiz.en_US
dc.contributor.authorLi, Ling, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2014-09-19T21:30:55Z
dc.date.available2014-09-19T21:30:55Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/89955
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 129-143).en_US
dc.description.abstractMany biological structural materials exhibit "mechanical property amplification" through their intricate hierarchical composite designs. In the past several decades, significant progress has been achieved in elucidating the structure/mechanical property relationships of these materials. However, the design strategies of structural biomaterials with additional functional roles are still largely unexplored. This thesis, by selecting three unique mollusk shell model systems, explores the fundamental design strategies of multifunctional biomineralized materials with dual mechanical and optical functions: transparency, photonic coloration, and lens-mediated vision. The model systems are the bivalve Placuna placenta, the limpet Patella pellucida, and the chiton Acanthopleura granulata, respectively. By investigating the relationships between the mechanical and optical properties and the structural characteristics, this thesis uncovers novel design strategies used to integrate optical functions into mechanically-robust material systems. The high transmission property of the P. placenta shells (~99 wt% calcite), for example, is elucidated through experimental and theoretical analysis based on a light scattering model. This armor utilizes deformation twinning and additional mechanisms at the nanoscale to enhance the energy dissipation efficiency by almost an order of magnitude relative to abiotic calcite. 3D quantitative analysis of the damage zone resulting from high load indentations was performed via synchrotron X-ray micro-computed tomography, revealing the formation of a complex network of microcracks. A unique structural motif, screw dislocation-like connection centers, is identified to enable a high density of crack deflection and bridging. This thesis also leads to the discovery of a unique biomineralized photonic structure in the shell of the blue-rayed limpet P. pellucida. The photonic system consists of a calcite multilayer and underlying particles, which provide selective light reflection through constructive interference and contrast enhancement through light absorption, respectively. Lastly, this thesis presents a detailed investigation of the biomineralized lenses embedded in the armor plates of the chiton A. granulata. The image formation capability of these lenses is experimentally demonstrated for the first time. The optical performance of the eyes is studied via comprehensive ray-trace simulations that take into account the experimentally measured geometry and crystallography of the lens. Mechanical studies illustrate that trade-offs between protection and sensation are present in the plates.en_US
dc.description.statementofresponsibilityby Ling Li.en_US
dc.format.extent149 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleBiomineralized structural materials with functional optical propertiesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc890128084en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record