Show simple item record

dc.contributor.advisorDavid E. Langseth.en_US
dc.contributor.authorCorsello, Joseph Williamen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2014-09-19T21:34:21Z
dc.date.available2014-09-19T21:34:21Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/90012
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 82-84).en_US
dc.description.abstractVapor intrusion is the vapor-phase migration of volatile organic compounds (VOCs) into buildings due to subsurface soil or groundwater contamination. Oxygen replenishment rates beneath a building are significant for quantifying potential contaminant degradation rates within the vadose zone. Additionally, the migration of VOC soil gas vapors into buildings is partly due to pressure differences between the building and the subsurface. This study addresses these issues through two laboratory scale experiments. The Wind Experiment quantifies oxygen replenishment rates as a function of above ground wind speed, while the Depressurization Experiment examines the flow rate of air into a model building as a function of decreased building pressure. For the Wind Experiment, tests were run for basement and slab-on-grade building configurations, as well as with and without a simulated sidewalk. Results show that increased above ground wind speed increases the oxygen replenishment rate and that the presence of a simulated sidewalk inhibits the oxygen replenishment rate. For the Depressurization Experiment, tests were again run for basement and slab-on-grade building configurations, as well as for two different foundation crack percentages. Results of the experiment indicate that increased building vacuum increases the flow rate of air into the building. In addition, basement configuration, increased foundation crack percentage, or some combination of the two results in increased airflow into the building. Additional research is needed for both experiments in order to obtain statistically significant results and resolve remaining uncertainties. Specific research needs include an improved wind source, additional monitoring locations, various sidewalk sizes and shapes, and different foundation crack configurations.en_US
dc.description.statementofresponsibilityby Joseph William Corsello.en_US
dc.format.extent204 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleLaboratory simulation of subsurface airflow beneath a buildingen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc890133937en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record