MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Compressed absorbing boundary conditions for the Helmholtz equation

Author(s)
Bélanger-Rioux, Rosalie
Thumbnail
DownloadFull printable version (2.190Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Laurent Demanet.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Absorbing layers are sometimes required to be impractically thick in order to offer an accurate approximation of an absorbing boundary condition for the Helmholtz equation in a heterogeneous medium. It is always possible to reduce an absorbing layer to an operator at the boundary by layer-stripping elimination of the exterior unknowns, but the linear algebra involved is costly. We propose to bypass the elimination procedure, and directly fit the surface-to-surface operator in compressed form from a few exterior Helmholtz solves with random Dirichlet data. We obtain a concise description of the absorbing boundary condition, with a complexity that grows slowly (often, logarithmically) in the frequency parameter. We then obtain a fast (nearly linear in the dimension of the matrix) algorithm for the application of the absorbing boundary condition using partitioned low rank matrices. The result, modulo a precomputation, is a fast and memory-efficient compression scheme of an absorbing boundary condition for the Helmholtz equation.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2014.
 
56
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 101-105).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/90179
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.