MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Air pollution and early deaths in the United States : attribution of PM₂.₅ exposure to emissions species, time, location and sector

Author(s)
Dedoussi, Irene Constantina
Thumbnail
DownloadFull printable version (2.815Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Steven R.H. Barrett.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Combustion emissions constitute the largest source of anthropogenic emissions in the US. They lead to the degradation of air quality and human health, by contributing to the formation of fine particulate matter (PM2 .5 ), which is harmful to human health. Previous work computed the population PM2 .5 exposure and number of early deaths caused by emissions from six major sectors: electric power generation, industry, commercial and residential activities, road transportation, marine transportation and rail transportation. In the present work we go beyond aggregate sectors and now attribute exposure and early deaths to sectors, emissions species, time of emission, and location of emission. This enables determination of the emissions reductions that would have the greatest benefit by sectors, species, time and location. We apply a long-term adjoint sensitivity analysis with population exposure to PM2 .5 in the contiguous US as the objective function, and calculate the four dimensional sensitivities (time and space) of PM2 .5 exposure with respect to each emissions species. Epidemiological evidence is used to relate increased population exposure to premature mortalities. This is the first regional application of the adjoint sensitivity analysis method to characterize long-term air pollution exposure. (A global scale application has been undertaken related to intercontinental pollution.) We find that for the electric power generation sector 75% of the attributable PM2 .5 exposure is due to SO2 emissions, and 80% of the annual impacts are attributed to emissions from April to September. This suggests that burning of low sulfur coal has greatest benefit in the summer. In the road transportation sector, 29% of PM2 .5 exposure is due to NO, emissions and 33% from ammonia (NH3), which is a result of emissions after-treatment technologies. We estimate that the benefit of reducing NH3 emissions from road transportation is ~20 times that of NOx per unit mass. 75% of the road transportation ammonia impacts occur during the months October to March. We rank the states based on their contribution to the overall combustion emissions-attributable PM2 .5 exposure in the US, and calculate that California contributes 12%, Pennsylvania 7% and Ohio 5.8%. We publicly release the sensitivity matrices computed, noting their potential use as a rapid air quality policy assessment tool.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 35-37).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/90658
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.