MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental constraints on the rheological behavior of olivine at upper mantle conditions

Author(s)
Dixon, Nathaniel Adams
Thumbnail
DownloadFull printable version (9.870Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.
Advisor
William B. Durham.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Since the discovery of plate tectonics, geophysicists have sought to understand the dynamic system driving the evolution of the earth, both at the surface and in the deep interior. While the deep earth contains far fewer phases than the crust, the inaccessibility of the mantle and core present a different challenge: unraveling the physical behavior of materials at conditions beyond our intuitive, observational, and experimental grasp. Among the most persistent of problems has been determining the influence of pressure on the mechanical behavior of deep rocks. Deformation experiments have typically been limited by equipment capabilities to only a tiny fraction of the pressure of the deep mantle, and thus our understanding pressure effect on rock strength has remained insufficient to precisely model the convection of the mantle at large scales in time and space. In the last decade, a promising new campaign in mantle rheology has been waged with two powerful emerging technologies: synchrotron x-ray diffraction, and complementary multi-anvil deformation machines. These advancements have allowed precisely controlled deformation experiments at conditions representative of the deep upper mantle, with unprecedented measurement precision. Here I present a detailed experimental study of the behavior of olivine at upper mantle conditions. Among the results is evidence of a significant pressure effect on the strength of olivine (an activation volume of 14 ± 3 cm3/mol), as well as pioneering in situ measurements of fabric development, slip system transitions, and stress heterogeneity.
Description
Thesis: Ph. D. in Geophysics, Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/90682
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.