MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Empty container logistics optimization : an implementation framework and methods

Author(s)
Lee, Bin Hong Alex
Thumbnail
DownloadFull printable version (11.45Mb)
Other Contributors
System Design and Management Program.
Advisor
Chris Caplice.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Empty container logistics is a huge cost component in an ocean carrier's operations. Managing this cost is important to ensure profitability of the business. This thesis proposes a 3-stage framework to handle empty container logistics with cost management as the objective. The first stage studies the forecasting of laden shipment demand, which provides the empty container supply requirement. Based on the supply needs, the problem of optimizing the fleet size was then addressed by using an inventory model to establish the optimal safety stock level. Simulations were used to understand the sensitivity of safety stock to desired service level. The final stage involves using mathematical programming to optimize repositioning costs incurred by carriers to ship empty containers to places which need them due to trade imbalance. At the same time, costs that are incurred due to leasing and storage are considered. A comparison between just-in-time and pre-emptive replenishment was performed and impact due to uncertainties is investigated. The framework is then implemented in a Decision Support System for an actual ocean carrier and is used to assist the empty container logistics team to take the best course of action in daily operations. The results from the optimizations show that there are opportunities for the carrier to reduce its fleet size and cut empty container logistics related costs.
Description
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, Engineering Systems Division, System Design and Management Program, 2014.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 68-70).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/90715
Department
System Design and Management Program.; Massachusetts Institute of Technology. Engineering Systems Division
Publisher
Massachusetts Institute of Technology
Keywords
Engineering Systems Division., System Design and Management Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.