MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning a strategy for whole-arm grasping

Author(s)
Anders, Ariel (Ariel Sharone)
Thumbnail
DownloadFull printable version (7.359Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Leslie Kaelbling and Tomás Lozano-Pérez.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Traditionally, robot grasping has been approached in two separate phases: first, finding contact positions that yield optimal grasps and, then, moving the robot hand to these positions. This approach works well when the object's location is known exactly and the robot's control is perfect. However, in the presence of uncertainty, this approach often leads to failure, usually because the robot's gripper contacts the object and causes the object to move away from the grasp. To obtain reliable grasping in the presence of uncertainty, the robot needs to anticipate the possible motions of the object during grasping. Our approach is to compute a policy that specifies the robot's motions over a range of joint states of the object and gripper, taking into account the expected motion of the object when pushed by the gripper. We use methods from continuous-state reinforcement-learning to solve for these policies. We test our approach on the problem of whole-arm grasping for a PR2, where one or both arms, as well as the torso can all serve to create contacts.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2014.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
23
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 69-71).
 
Date issued
2014
URI
http://hdl.handle.net/1721.1/91034
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.