Show simple item record

dc.contributor.advisorItai Ashlagi and David Gamarnik.en_US
dc.contributor.authorAnderson, Ross Michaelen_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2014-12-08T18:08:44Z
dc.date.available2014-12-08T18:08:44Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/92055
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2014.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 251-257).en_US
dc.description.abstractThis thesis considers problems in two areas in the healthcare operations: Kidney Paired Donation (KPD) and scheduling medical residents in hospitals. In both areas, we explore the implications of policy change through high fidelity simulations. We then build stochastic models to provide strategic insight into how policy decisions affect the operations of these healthcare systems. KPD programs enable patients with living but incompatible donors (referred to as patient-donor pairs) to exchange kidneys with other such pairs in a centrally organized clearing house. Exchanges involving two or more pairs are performed by arranging the pairs in a cycle, where the donor from each pair gives to the patient from the next pair. Alternatively, a so called altruistic donor can be used to initiate a chain of transplants through many pairs, ending on a patient without a willing donor. In recent years, the use of chains has become pervasive in KPD, with chains now accounting for the majority of KPD transplants performed in the United States. A major focus of our work is to understand why long chains have become the dominant method of exchange in KPD, and how to best integrate their use into exchange programs. In particular, we are interested in policies that KPD programs use to determine which exchanges to perform, which we refer to as matching policies. First, we devise a new algorithm using integer programming to maximize the number of transplants performed on a fixed pool of patients, demonstrating that matching policies which must solve this problem are implementable. Second, we evaluate the long run implications of various matching policies, both through high fidelity simulations and analytic models. Most importantly, we find that: (1) using long chains results in more transplants and reduced waiting time, and (2) the policy of maximizing the number of transplants performed each day is as good as any batching policy. Our theoretical results are based on introducing a novel model of a dynamically evolving random graph. The analysis of this model uses classical techniques from Erdos-Renyi random graph theory as well as tools from queueing theory including Lyapunov functions and Little's Law. In the second half of this thesis, we consider the problem of how hospitals should design schedules for their medical residents. These schedules must have capacity to treat all incoming patients, provide quality care, and comply with regulations restricting shift lengths. In 2011, the Accreditation Council for Graduate Medical Education (ACGME) instituted a new set of regulations on duty hours that restrict shift lengths for medical residents. We consider two operational questions for hospitals in light of these new regulations: will there be sufficient staff to admit all incoming patients, and how will the continuity of patient care be affected, particularly in a first day of a patients hospital stay, when such continuity is critical? To address these questions, we built a discrete event simulation tool using historical data from a major academic hospital, and compared several policies relying on both long and short shifts. The simulation tool was used to inform staffing level decisions at the hospital, which was transitioning away from long shifts. Use of the tool led to the following strategic insights. We found that schedules based on shorter more frequent shifts actually led to a larger admitting capacity. At the same time, such schedules generally reduce the continuity of care by most metrics when the departments operate at normal loads. However, in departments which operate at the critical capacity regime, we found that even the continuity of care improved in some metrics for schedules based on shorter shifts, due to a reduction in the use of overtime doctors. We develop an analytically tractable queueing model to capture these insights. The analysis of this model requires analyzing the steady-state behavior of the fluid limit of a queueing system, and proving a so called "interchange of limits" result.en_US
dc.description.statementofresponsibilityby Ross Michael Anderson.en_US
dc.format.extent257 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titleStochastic models and data driven simulations for healthcare operationsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.contributor.departmentSloan School of Management
dc.identifier.oclc895645083en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record