Show simple item record

dc.contributor.advisorAlex Slocum.en_US
dc.contributor.authorRea, Jonathan (Jonathan E.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2014-12-08T18:09:46Z
dc.date.available2014-12-08T18:09:46Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/92070
dc.descriptionThesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 57-58).en_US
dc.description.abstractAnaerobic digesters convert organic waste (agricultural and food waste, animal or human manure, and other organic waste), into energy (in the form of biogas or electricity). An added benefit to bio-digestion is a leftover high-grade organic fertilizer. Models of the anaerobic digestion process do exist, but either rely on simple algebraic equations instead of biochemical reactions, or consider so many external parameters that they become overly complicated and require much input information and computation time. This work provides an intermediate kinetic model that predicts biogas output over time with few inputs. This kinetic model is justified by a small-scale laboratory experiment, and parameters are adjusted to match experimental results. This model can be used to optimize design parameters for an anaerobic digester, and provides information such as the relationship between digester sizing and feed rate. The process used here may be expanded to other feedstock materials and repeated for other similar applications, in an effort to expand anaerobic digestion systems as a clean energy source.en_US
dc.description.statementofresponsibilityby Jonathan Rea.en_US
dc.format.extent58 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleKinetic modeling and experimentation of anaerobic digestionen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc897368626en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record