Show simple item record

dc.contributor.advisorAnne White.en_US
dc.contributor.authorWinters, Victoria Ren_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Nuclear Science and Engineering.en_US
dc.date.accessioned2015-01-05T20:06:54Z
dc.date.available2015-01-05T20:06:54Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/92696
dc.descriptionThesis: S.B., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 30-31).en_US
dc.description.abstractUnderstanding the underlying dynamics of turbulence in magnetic confinement fusion experiments is extremely important. Turbulence greatly reduces the confinement time of these devices and therefore greater knowledge of turbulent dynamics can help with its mitigation. Experiments from the Alcator C-Mod tokamak [18] provide support for a theory that edge turbulence in tokamak fusion plasmas is the result of deterministic chaos, rather than stochastic processes [15]. Using readily available reflectometer data from Alcator C-Mod (C-Mod), analysis of C-Mod edge turbulence in Ohmic plasmas and Ion Cyclotron Range of Frequencies (ICRF) heated L-Mode plasmas shows that density fluctuations just inside or at the Last Closed Flux Surface (LCFS) exhibit exponential power spectra. Theoretically, the characteristic slope of the data on a semi-log plot gives the full width of the underlying Lorentzian pulses, which give rise to the exponential power spectra due to the dynamics of deterministic chaos. Using a separate fitting routine, individual Lorentzian pulses in the reflectometer time series data are identified, and the widths of the Lorentzian pulses match the inverse characteristic frequency of the exponential power spectra. Analysis of the waiting times between pulses and the pulse amplitudes indicate these are randomly distributed yet the pulse widths have a narrow distribution. These characteristics are consistent with a chaotic process. There is also a preliminary comparison of GPI data and a discussion of limitations of the analysis presented here and plans for future work. Overall, the experimental results in this study are consistent with edge turbulence that is at least partially generated by chaotic dynamics.en_US
dc.description.statementofresponsibilityby Victoria R. Winters.en_US
dc.format.extent36 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectNuclear Science and Engineering.en_US
dc.titleDeterministic chaos in Alcator C-Mod edge turbulenceen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.identifier.oclc898332676en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record