dc.contributor.advisor | Edward H. Adelson and Mandayam A. Srinivasan. | en_US |
dc.contributor.author | Yuan, Wenzhen, Ph. D. Massachusetts Institute of Technology | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Mechanical Engineering. | en_US |
dc.date.accessioned | 2015-02-05T18:24:29Z | |
dc.date.available | 2015-02-05T18:24:29Z | |
dc.date.copyright | 2014 | en_US |
dc.date.issued | 2014 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/93815 | |
dc.description | Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 119-121). | en_US |
dc.description.abstract | This thesis introduces a method of measuring contact force with GelSight. GelSight is an optical-based tactile sensor that uses a piece of coated elastomer as the contact medium. A camera records the distortion of the elastomer during contact. This sensor can obtain a high-resolution view of the contact surface geometry, which is a breakthrough for artificial tactile sensors. In this thesis, I will introduce my work on trying to measure the contact force with GelSight. This work is based on adding markers to the elastomer surface and using them to track the planar deformation field of the elastomer surface. I derive a quantitative relationship between the surface's planar deformation field and the external contact force. I describe the development of a finite element model of the elastomer as well as the experiments on a bench-top and a portable GelSight devices. The experiments show that the contact force and the deformation field are closely related, and indicate that the method is effective in inferring the contact state under realistic conditions. | en_US |
dc.description.statementofresponsibility | by Wenzhen Yuan. | en_US |
dc.format.extent | 121 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mechanical Engineering. | en_US |
dc.title | Tactile measurement with a GelSight sensor | en_US |
dc.title.alternative | Tactile measurement with a Gel Sight sensor | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.identifier.oclc | 900633744 | en_US |