Show simple item record

dc.contributor.advisorMartin F. Polz.en_US
dc.contributor.authorXue, Hong, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2015-02-25T17:10:40Z
dc.date.available2015-02-25T17:10:40Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/95568
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractPlasmids and other extrachromosomal elements (ECEs) are recognized as key factors mediating horizontal gene transfer; however, their diversity and dynamics among ecologically structured host populations in the wild remains poorly understood. Here we take a population-genomic approach to determine carriage of different types of ECEs in a recently established model for ecologically and genetically cohesive bacterial populations, asking whether different ECE types (i) are primarily associated to host phylogeny or ecology, (ii) have distinct transfer (and loss) patterns, and (iii) display different microevolutionary dynamics. We employed two models of environmental bacterial populations: a Vibrio cholerae population isolated from a coastal brackish pond (Oyster Pond, Woods Hole, MA), and diverse co-existing Vibrio populations comprising several species from Plum Island Sound (Ipswich, MA). High frequency (>40%) of a novel filamentous phage, VCYD, was detected in a collection of 531 isolates of V. cholerae. VCYD occurs both in the host-genome integrative form (IF) and a plasmid-like replicative form (RF). The relative frequency of each form differed among isolates from portions of the pond displaying different salinities, suggesting potential impact of host habitat on the biology of bacteriophages. Using the second model, we isolated 187 ECEs from 660 isolates previously categorized into 25 different ecologically and genetically cohesive populations. We identified the following elements: 22 bacteriophages, and 24 conjugative, 38 mobilizable and 103 so-called non-transmissible ECEs. While mobilizable ECEs require co-occurring conjugative plasmids for successful transfer, non-transmissible ECEs do not encode any genes for self-transfer. We further found that ECEs were significantly enriched in free-living cells, suggesting association of ECEs with host environment. The finding of phage as a major and stable ECE component is surprising and the absence of any integrase genes suggests that these are lysogens that do not integrate into the host genome. Finally, our data show that a type of plasmids previously defined as "non-transmissible" appears to be most common among Vibrio ECEs and that they have been transferred recently and frequently among distantly related populations through mechanisms yet to be uncovered. Overall, this study suggests a dynamic mobile gene pool with high turnover among host populations.en_US
dc.description.statementofresponsibilityby Hong Xue.en_US
dc.format.extent112 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleThe eco-evolutionary dynamics of extrachromosomal elements in environmental vibrioen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc903537995en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record