Show simple item record

dc.contributor.advisorStéphane Rondenay and B. Clark Burchfiel.en_US
dc.contributor.authorPearce, Frederick D. (Frederick Douglas), 1978-en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.en_US
dc.date.accessioned2015-06-10T18:40:34Z
dc.date.available2015-06-10T18:40:34Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/97259
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 196-210).en_US
dc.description.abstractIn this dissertation, I investigate the structure and dynamics of the Western Hellenic Subduction Zone (WHSZ) by using two complementary seismic imaging methods and interpreting the resulting images with models that describe the dynamics of retreating subduction. First, I produce high-resolution seismic images across northern and southern Greece using a two-dimensional teleseismic migration method. These images show subducted oceanic crust beneath southern Greece and subducted continental crust beneath northern Greece, with the relative position of the two crusts indicating ~70 km of additional slab retreat in the south relative to the north, a result consistent with the predicted relationship between slab buoyancy and retreat rates in recent geodynamic models. Second, I develop a three-dimensional receiver function imaging method, test it with synthetic data, and use it to constrain along strike variations in lithospheric structure. I find a continuous slab Moho across northern and southern Greece between ~40 and 80 km depth, with a gentle, trench-parallel component of dip accommodating the observed differential slab retreat. The overriding Moho is deepest beneath the northern Hellenides (35-40 km) and shallowest beneath the Aegean Sea (25-30 km). It also exhibits several characteristics consistent with a retreating subduction model: (1) it is asymmetric when viewed perpendicular to the trench, not symmetric as has been found in previous studies, (2) the location of its leading edge closely tracks the 70 km depth contour of the slab Moho, (3) a well-developed Moho is not observed below the peak topography of the Hellenides, and (4) it exhibits Moho depth fluctuations that are much larger than those predicted assuming surface topography is locally compensated by Airy- Heiskanen isostasy (>+/-4 km). Finally, I combine the seismic-based constraints with those from geologic data and geodynamic models to better understand how the overriding lithosphere is built and deformed during slab retreat. In northern Greece, the overriding crust is found to be predominately built by accretion of slab-derived continental blocks, while in southern Greece the present-day subduction of an oceanic slab domain has caused previously accreted continental blocks to rapidly extend, yielding an asymmetric, valley-shaped pattern in the top of the crystalline basement.en_US
dc.description.statementofresponsibilityby Frederick D. Pearce.en_US
dc.format.extent210 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.titleSeismic imaging of the western Hellenic subduction zone : the relationship between slab composition, retreat rate, and overriding lithosphere genesisen_US
dc.title.alternativeSeismic imaging of the WHSZ : the relationship between slab composition, retreat rate, and overriding lithosphere genesisen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc910513648en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record