Show simple item record

dc.contributor.advisorGuillermo J. Tearney.en_US
dc.contributor.authorUnglert, Carolin Isabellaen_US
dc.contributor.otherHarvard--MIT Program in Health Sciences and Technology.en_US
dc.date.accessioned2015-07-17T19:51:03Z
dc.date.available2015-07-17T19:51:03Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/97830
dc.descriptionThesis: S.M., Harvard-MIT Program in Health Sciences and Technology, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 73-77).en_US
dc.description.abstractThe health of the human respiratory system depends critically on airway clearance via motile hair-like structures (cilia), which transport and eliminate unwanted particles trapped within mucus. Impairment of mucociliary clearance (MCC) can lead to life-threatening airway narrowing and lung infections, and is a major cause of morbidity and mortality in patients with cystic fibrosis, primary ciliary dyskinesia and chronic obstructive lung disease. However, no tool for microscopic in-vivo visualization of ciliary function is currently available, limiting studies of disease pathogenesis, refined diagnosis and phenotyping, and the development of novel therapeutics. In this thesis, a novel, 1-pm resolution, optical interferometric imaging technique termed Micro-OCT was incorporated into miniaturized common-path endoscopes and mucociliary transport was visualized in vivo for the first time. The first-generation Micro-OCT probe had a rigid design with outer diameter of 4 mm and a two-prism configuration providing beam splitting and sample beam shaping into an annular profile. Image quality of the probe allowed visualization of the periodic pattern of ciliary beating, measurement of airway surface liquid depth (ASL) and visualization of mucociliary transport. Unaltered ciliary function was demonstrated in a living, spontaneously breathing swine model. Newer generation common-path endoscope designs were demonstrated that improve, among other limitations, the stability of the reference reflector position and provide greater potential for miniaturization. The presented work opens unprecedented avenues for studying MCC and the effect of novel therapeutics within the complexity of a living organism. Further, it lays the groundwork for the development of a human probe with the potential to revolutionize diagnosis, phenotyping, and therapy management for all patients with respiratory disease involving the mucociliary escalator.en_US
dc.description.statementofresponsibilityby Carolin Isabella Unglert.en_US
dc.format.extent77 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectHarvard--MIT Program in Health Sciences and Technology.en_US
dc.titleNovel endoscopes for microscopic assessment of airway clearance using micro-optical coherence tomographyen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.identifier.oclc913232611en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record