Show simple item record

dc.contributor.advisorDaniel R. Cohn.en_US
dc.contributor.authorAcocella, Angela J. (Angela Josephine)en_US
dc.contributor.otherMassachusetts Institute of Technology. Technology and Policy Program.en_US
dc.date.accessioned2015-09-17T17:41:50Z
dc.date.available2015-09-17T17:41:50Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/98548
dc.descriptionThesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, Engineering Systems Division, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 88-93).en_US
dc.description.abstractAs global energy demands grow and environmental concerns over resource extraction methods intensify, high impact solutions are becoming increasingly essential. Venting and flaring of associated natural gas represents significant environmental and financial losses yet it continues in the North Dakota Bakken oil play. The valuable gas resource is wasted due to unfavorable economics and limited pipeline capacity. Similarly in India, underdeveloped gas transport infrastructure and restrictive regulatory frameworks prevent distribution and marketing of natural gas from the northeast regions, leaving it stranded in marginal fields. This thesis establishes a techno-economic model, utilizing Aspen Plus chemical processing software, and a discounted cash flow model to estimate economic feasibility of implementing MIT engine reformer-based gas-to-liquids (GTL) systems in the US or India. The system reforms natural gas via partial oxidation into synthesis gas (syngas) in the cylinders of an internal combustion engine, and can significantly reduce capital costs over conventional GTL reforming processes. The engine is operated in fuel rich conditions to generate the syngas, which is synthesized into methanol and dimethyl ether (DME). Once produced on-site, these liquids are more easily transported than gases. This study assesses the regulatory structures surrounding the upstream methane resource and downstream end product marketability for three scenarios: use of DME to replace existing local (1) diesel and (2) liquefied petroleum gas (LPG), or (3) sale of methanol as a commodity chemical on domestic or global markets. The analysis shows the system is economical in both locations. In the US, the minimum economically efficient production capacity with a 1-2 year payback period is 400,000- 860,000 standard cubic feet per day (scfpd) of natural gas for the range of end use scenarios considered. Differences in costs and product market characteristics in India result in a minimum efficient capacity of 330,000-810,000 scfpd of natural gas for the three scenarios.en_US
dc.description.statementofresponsibilityby Angela J. Acocella.en_US
dc.format.extent107 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleSystem model of small-scale gas-to-methanol conversion by engine reformersen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.identifier.oclc920673913en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record