Show simple item record

dc.contributor.advisorGregory Stephanopoulos.en_US
dc.contributor.authorChakraborty, Sagar, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemical Engineering.en_US
dc.date.accessioned2015-09-17T19:05:53Z
dc.date.available2015-09-17T19:05:53Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/98701
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractCost effective production of biofuels depends critically on feedstock cost and availability. As such, volatile fatty acids (VFAs) can play an important role in advancing sustainable biofuel production since they can be derived from low cost feedstock including gases and municipal solid waste. To this end, we studied fermentations of the oleaginous microbe Yarrowia lipolytica engineered for lipid overproduction. With acetate as sole carbon source, we conducted fed batch fermentations of Y. lipolytica in which acetic acid was maintained at low, non-inhibitory levels yielding high lipid titer of 50 g/L and productivity of 0.25 g/L/h, along with a lipid content of 60%. We also conducted fed batch fermentations with cell recycle to utilize dilute steams of acetic acid that essentially replicated the results of the fed batch process. Carbon balances were satisfied and no excess carbon dioxide production was detected beyond the amounts associated with biomass formation and product synthesis. Acetate is one member of the entire range of VFAs produced from municipal solid waste (MSW) via anaerobic digestion; thus, facilitating the use of MSW as a primary feedstock would be contingent on the ability of the above strain to grow on a mixture of VFAs. Given the insufficient literature examining microbial growth on VFAs, one of the goals of this project was to explore individual as well as mixed VFAs as a feedstock for Y.lipolytica. Dilute stream of mixed VFAs were successfully used as feed in bioreactor studies to obtain high cell density cultures. Similar results with respect to lipid production were obtained in comparison to the study on acetate. In addition, the microbe could tolerate perturbations in the feed composition and grow to similar cell densities. The success in establishing VFAs as a potential substrate for lipid accumulation in Yarrowia lipolytica raises the possibility of a two-stage commercial bioprocess enabling biodiesel production from MSW.en_US
dc.description.statementofresponsibilityby Sagar Chakraborty.en_US
dc.format.extent188 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemical Engineering.en_US
dc.titleExploring volatile fatty acids (VFAs) as a novel substrate for microbial oil productionen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.identifier.oclc920688617en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record