Show simple item record

dc.contributor.advisorGeorgia Perakis and Alexander Slocum.en_US
dc.contributor.authorMullen, Richard A. (Richard Almond)en_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2015-09-29T18:59:01Z
dc.date.available2015-09-29T18:59:01Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/99027
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2015. In conjunction with the Leaders for Global Operations Program at MIT.en_US
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015. In conjunction with the Leaders for Global Operations Program at MIT.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 69-71).en_US
dc.description.abstractInfrastructure has to weather the elements and still function. Gas transmission and distribution piping at a utility are no exception. Atmospheric corrosion deteriorates the integrity of the natural gas system, and utilities need to respond with countermeasures in order to mitigate the risk. The ability to predict where atmospheric corrosion will cause leaks will allow for a better allocation of resources in mitigating the risk caused by corrosion. First a corrosion simulation model was developed to predict the number of leaks in each geographic area in PG&E's service area. Past meteorological data, past pollution data, 2014 atmospheric corrosion inspections on 2.27 million meters, leak data, and gas system asset information (meter age, type, etc.) were used. The qualitative observations and a quantitative model were then coupled in a simulation model to predict the number of leaks depending on the years between atmospheric corrosion inspections. Utilizing the output of the corrosion prediction model, an optimization model was developed to determine the atmospheric corrosion inspection frequency that will minimize the risk of leaks to the system. This model will allow PG&E to understand how reallocating inspection resources can reduce risk of leaks. The overall results indicate that data quality plays a very important role in coupling qualitative observations with a quantitative model. From the model developed and analyzed in this thesis, several opportunities for better data collection were identified. By collecting targeted data on localized corrosion and corrosion rates, qualitative inspections can contribute greatly to accurately model corrosion where quantitative models are lacking.en_US
dc.description.statementofresponsibilityby Richard A. Mullen.en_US
dc.format.extent71 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleRisk mitigation of pipeline assets through improved corrosion modelingen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentSloan School of Management
dc.identifier.oclc921307033en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record