Machine learning for real-time demand forecasting
Author(s)
Xu, Runmin, S.M. Massachusetts Institute of Technology
DownloadFull printable version (7.564Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
Una-May O'Reilly.
Terms of use
Metadata
Show full item recordAbstract
For a taxi company, the capability to forecast taxi demand distribution in advance provides valuable decision supports. This thesis studies real-time forecasting system of spatiotemporal taxi demand based on machine learning approaches. Traditional researches usually examine a couple of candidate models by setting up an evaluation metric and testing the overall forecasting performance of each model, finally the best model is selected. However, the best model might be changing from time to time, since the taxi demand patterns are sensitive to the dynamic factors such as date, time, weather, events and so on. In this thesis, we first study range searching techniques and their applications to taxi data modeling as a foundation for further research. Then we discuss machine learning approaches to forecast taxi demand, in which the pros and cons of each proposed candidate model are analyzed. Beyond single models, we build a five-phase ensemble estimator that makes several single models work together in order to improve the forecasting accuracy. Finally, all the forecasting approaches are evaluated in a case study over rich taxi records of New York City. Experiments are conducted to simulate the operation of real-time forecasting system. Results prove that multi-model ensemble estimators do produce better forecasting performances than single models.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015. Thesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015. Cataloged from PDF version of thesis. Includes bibliographical references (pages 89-92).
Date issued
2015Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science., Civil and Environmental Engineering.