Show simple item record

dc.contributor.advisorJohn T. Germaine.en_US
dc.contributor.authorNordquist, Taylor Jamesen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2015-10-30T18:57:16Z
dc.date.available2015-10-30T18:57:16Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/99578
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 257-260).en_US
dc.description.abstractPermeability anisotropy (ratio of horizontal to vertical permeability) is an important but uncertain parameter used in characterizing underground formations. While it is a fairly unknown parameter, it is integral for the petroleum industry, where a greater permeability anisotropy understanding can greatly aid in basin modelling, pore pressure prediction, and borehole stability. This research experimentally characterizes the permeability anisotropy of several mudrocks, which are clay-rich sedimentary formations, using re-sedimentation, a process of homogenization of naturally-occurring soils and recreation of the sedimentation environment in a controlled laboratory setting. The permeability anisotropy of resedimented Boston Blue Clay (RBBC), an illitic lean clay (CL), increases from 1.5 to 3 when mechanically compressed from 0.1 to 40 MPa, corresponding to porosities ranging from 0.55 to 0.26. Resedimented Gulf of Mexico - Eugene Island mudrock (RGoM-EI), a smectitic fat clay (CH), exhibits permeability anisotropy increasing from 1 to 5 when compressed to the same stresses, corresponding to porosities ranging from 0.6 to 0.25. Not only does smectitic RGoM-EI mudrock transition to greater anisotropy with compression, but the rate of increase accelerates with compression. These measurements are made using a commercially-available Trautwein® constant rate of strain (CRS) consolidometer with vertical drainage combined with a novel radially-outward draining CRS device. The combination of the vertically and radially draining CRS devices produces permeability anisotropy data quickly, with very little scatter. For RGoM-EI, the effects of horizontal shearing to 29.5% shear strain at 0.14 MPa on permeability anisotropy are negligible. Permeability anisotropy of the homogeneous resedimented mudrocks tested, using a cubic specimen constant head permeameter within a triaxial cell, is directly correlated to their electrical conductivity anisotropy. The permeability anisotropy values measured using this technology, however, are lower than those measured using CRS testing.en_US
dc.description.statementofresponsibilityby Taylor James Nordquist.en_US
dc.format.extent277 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titlePermeability anisotropy of resedimented mudrocksen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc924859967en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record