Show simple item record

dc.contributor.advisorPierre Ghisbain.en_US
dc.contributor.authorBorchers, Stephanieen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Civil and Environmental Engineering.en_US
dc.date.accessioned2015-10-30T18:58:09Z
dc.date.available2015-10-30T18:58:09Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/99587
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (page 55).en_US
dc.description.abstractDesigning structures to be resilient to extreme loads has become a topic of interest in recent years, which has been triggered by the progressive collapse of structures in the past. Structural failure due to the lack of resilient design has been particularly prevalent in bridges. The failures have been results of a variety of factors that the bridges have been subjected to. The objective of preventing the occurrence of future collapses has encouraged further research into the design of resilient structures. Two main methods to design for resilience have been implemented in this thesis. These methods include the incorporation of robustness or redundancy into the bridge design. Each method is advantageous over the other in certain circumstances. These methods are both based on linear static analysis procedures. A series of 2D truss bridge models with varying parameters have been analyzed for their performance in damaged states. The damage incurred by the bridges include the removal of a pier and the removal of bridge members. The results of this investigation conclude that the cost of designing a bridge to be resilient is relatively low in comparison to the overall cost of the bridge. Robust bridge designs are generally more effective for bridges with longer spans, whereas designs with redundancy are better suited for shorter spans. As the amount of structural damage that is incurred by a bridge increases, the more redundancy should be built into the structure. These results were shared by all three of the truss topologies that were explored.en_US
dc.description.statementofresponsibilityby Stephanie Borchers.en_US
dc.format.extent60 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectCivil and Environmental Engineering.en_US
dc.titleParametric analysis of resilient design of steel truss bridgesen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineering
dc.identifier.oclc925474881en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record