Show simple item record

dc.contributor.advisorTimothy K. Lu.en_US
dc.contributor.authorPerli, Samuel Daviden_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2015-11-09T19:12:40Z
dc.date.available2015-11-09T19:12:40Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/99781
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 145-158).en_US
dc.description.abstractNatively functioning Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated (Cas) system is a prokaryotic adaptive immune system that confers resistance to foreign genetic elements including plasmids and phages. Very recently, a two-component CRISPR-Cas technology from Streptococcus Pyogenes comprising of the RNA-guided DNA endonuclease Cas9 and the guide RNA (gRNA) has been demonstrated to enable unprecedented genome editing efficiency across all domains of life. Current applications however, employ CRISPR/Cas technology in a stand-alone fashion, isolated from the rich biological machinery of the host environment in which it is applied. In this thesis, I present a toolkit designed by integrating CRISPR/Cas technology with a wide array of mammalian molecular components, thereby enabling altogether novel applications while enhancing the efficiency of current applications. By integrating a catalytically dead version of the CRISPR/Cas protein Cas9 (dCas9) with mammalian transcriptional activator VP64 and mammalian transcriptional repressor KRAB, we build and characterize tunable, multifunctional and orthogonal CRISPR/Cas transcription factors (CRISPR-TFs) in human cells. By integrating CRISPR-TFs and Cas6/Csy4 based RNA processing with multiple mammalian RNA regulatory strategies including RNA Polymerase II (RNAP II) promoters, RNAtriple- helix structures, introns, microRNAs and ribozymes, we demonstrate efficient modulation of endogenous promoters and the implementation of tunable synthetic circuits such as multistage cascades and RNA-dependent networks that can be rewired with Csy4. In summary, our integrated toolkit enables efficient and multiplexed modulation of endogenous gene networks, construction of highly scalable and tunable synthetic gene circuits. Our toolkit can be used for perturbing endogenous networks towards developmental, therapeutic and synthetic biology applications.en_US
dc.description.statementofresponsibilityby Samuel David Perli.en_US
dc.format.extent158 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAn integrated CRISPR-Cas toolkit for engineering human cellsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc927411404en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record