dc.contributor.advisor | Dana Weinstein | en_US |
dc.contributor.author | Wang, Siping, S.M. Massachusetts Institute of Technology | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2015-11-09T19:51:40Z | |
dc.date.available | 2015-11-09T19:51:40Z | |
dc.date.copyright | 2015 | en_US |
dc.date.issued | 2015 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/99831 | |
dc.description | Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 41-42). | en_US |
dc.description.abstract | We present a Gallium Nitride (GaN) Lamb Wave resonator using a Phononic Crystal (PnC) to selectively confine elastic vibrations with wide-band spurious mode suppression. A unique feature of the design demonstrated here is a folded PnC structure to relax energy confinement in the non-resonant dimension and to enable routing access of piezoelectric transducers inside the resonant cavity. This provides a clean spectrum over a wide frequency range and improves series resistance relative to transmission line or tethered resonators by allowing a low-impedance path for drive and sense electrodes. GaN resonators are demonstrated with wide-band suppression of spurious modes, f -Q product up to 3.06 x 1012, and resonator coupling coefficient k2.eff up to 0.23%. (filter BW up to 0.46%). Furthermore, these PnC GaN resonators exhibit record-breaking power handling, with IIP3 of +27.2dBm demonstrated at 993MHz. | en_US |
dc.description.statementofresponsibility | by Siping Wang. | en_US |
dc.format.extent | 42 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Gallium Nitride phononic crystal resonator | en_US |
dc.title.alternative | GaN phononic crystal resonator | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 927353020 | en_US |