dc.contributor.advisor | Vincent W.S. Chan. | en_US |
dc.contributor.author | Feffer, Antonia Lynn | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2015-11-09T19:54:04Z | |
dc.date.available | 2015-11-09T19:54:04Z | |
dc.date.copyright | 2015 | en_US |
dc.date.issued | 2015 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/99866 | |
dc.description | Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 107-109). | en_US |
dc.description.abstract | Optical networking is a powerful means of communication in modem times of high bandwidth demands and high data speeds. While developments in optical networking continue to progress, however, the security implications they create have not yet caught up. In this thesis, we characterize a selection of damaging attacks against optical networks. By providing a detailed description of the attacks, we are also able to better understand their effects across the different layers of the network model. We also propose the current best practices for sensing and detection of these attacks when they occur, as well as mitigation techniques to limit the damage they incur. The attacks are not fully eliminated, however, and so we also identify remaining vulnerabilities these attacks can exploit. After characterizing the attacks, we propose a method for diagnosing attacks as they occur within a network given the analysis we have conducted. We also propose an algorithm for diagnosing attacks, as well as a monitoring system framework that relies on the establishment of autonomous zones of the network in order to efficiently limit damage and quarantine problem areas from the rest of the healthy network. This framework can be applied to a wide variety of network set-ups and topologies, with the ability to customize it to fit the needs of the system. | en_US |
dc.description.statementofresponsibility | by Antonia Lynn Feffer. | en_US |
dc.format.extent | 109 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Comprehensive security strategy for all-optical networks | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 928026965 | en_US |