This is an archived course. A more recent version may be available at ocw.mit.edu.

Archived Versions

Lecture Notes

This section contains the lecture notes for the course. Each set of notes refer to reading assignments for the course textbook, Introduction to Probability. written by Professors John Tsitsiklis and Dimitri Bertsekas. Some of the slides in the notes are intentionally left blank, used by the instructors to work through material with students during class.

Ses # Topics
L1 Probability Models and Axioms (PDF)
L2 Conditioning and Bayes' Rule (PDF)
L3 Independence (PDF)
L4 Counting (PDF)
L5 Discrete Random Variables; Probability Mass Functions; Expectations (PDF)
L6 Conditional Expectation; Examples (PDF)
L7 Multiple Discrete Random Variables (PDF)
L8 Continuous Random Variables - I (PDF)
L9 Continuous Random Variables - II (PDF)
L10 Continuous Random Variables and Derived Distributions (PDF)
L11 More on Continuous Random Variables, Derived Distributions, Convolution (PDF)
L12 Transforms (PDF)
L13 Iterated Expectations, Sum of a Random Number of Random Variables (PDF)
L14 Prediction; Covariance and Correlation (PDF)
L15 Bernoulli Process (PDF)
L16 Poisson Process (PDF)
L17 Poisson Process Examples (PDF)
L18 Markov Chains - I (PDF)
L19 Markov Chains - II (PDF)
L20 Markov Chains - III (PDF)
L21 Weak Law of Large Numbers (PDF)
L22 Central Limit Theorem (PDF)
L23 Strong Law of Large Numbers (PDF)
L24 Interactive Exploration