| ses # | TOPICS | READINGS |
|---|---|---|
| L1 | Real Numbers | pp. 1-12 |
| L2 | Complex Numbers Euclidean Spaces | pp. 12-17 |
| L3 | Countable, Uncountable Sets | pp. 24-30 |
| L4 | Metric Spaces | pp. 30-36 |
| L5 | Compact Sets | pp. 36-39 |
| L6 | Heine-Borel Theorem Connected Sets | pp. 40-43 |
| L7 | Convergent Sequences | pp. 47-52 and 58 |
| L8 | Cauchy Sequences, Completeness | pp. 52-57 |
| L9 | Series | pp. 59-72 |
| L10 | Limits of Functions, Continuity | pp. 83-88 |
| L11 | Continuity, Compactness, Connectedness | pp. 89-93 |
| L12 | Discontinuities, Monotonic Functions | pp. 94-97 |
| L13 | Differentiation Mean Values Theorem | pp. 103-107 |
| L14 | l'Hopital Taylor's Theorem | pp. 108-112 |
| L15 | Riemann-Stieltjes Integral | pp. 120-124 |
| L16 | Riemann-Stieltjes Integral (cont.) | pp. 124-127 |
| L17 | Properties of the Integral | pp. 128-133 |
| L18 | The Fundamental Theorem of Calculus | pp. 133-136 |
| L19 | Sequences of Functions Uniform Convergence | pp. 143-151 |
| L20 | Uniform Convergence, Equicontinuity | pp. 151-158 |
| L21 | Stone-Weierstrass Theorem | pp. 159-165 |
| L22 | Analytic Functions Algebraic Completeness | pp. 173-185 |
| L23 | Fourier Series | pp. 185-192 |
| L24 | Review |









