Lec # | Topics | Readings |
---|---|---|
1 | Introduction Pigeonhole Principle |
Chapter 1 |
2 | Mathematical Induction | Chapter 2 |
3 | Permutations | Chapter 3 |
4 | Binomial Theorem | Chapter 4 |
5 | Compositions Integer Partitions |
Chapter 5 |
6 | Set Partitions | |
7 | Cycles in Permutations Stirling Numbers |
Chapter 6 |
8 | Exam 1 | |
9 | Inclusion-exclusion Principle | Chapter 7 |
10 | Inclusion-exclusion (cont.) Mobius Inversion |
|
11 | Recurrence Relations | |
12 | Generating Functions | Chapter 8 |
13 | Generating Functions (cont.) | |
14 | Catalan Numbers | |
15 | Generating Functions (cont.) | |
16 | Exam 2 | |
17 | Graphs Eulerian Walks Hamiltonian Cycles |
Chapter 9 |
18 | Trees Counting Trees |
Chapter 10 |
19 | Matrix-tree Theorem | |
20 | Matrix-tree Theorem (cont.) | |
21 | Matrix-tree Theorem and Eulerian Digraphs | |
22 | Bipartite Graphs and Matchings | Chapter 11 |
23 | Planar Graphs Polyhedra Maps |
Chapter 12 |
24 | Chromatic Polynomials | |
25 | Exam 3 | |
26 | Polya Counting Ramsey Theory Probabilistic Method |