dc.contributor.advisor | Dana Weinstein. | en_US |
dc.contributor.author | Wang, Wentao, Ph. D. Massachusetts Institute of Technology | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Mechanical Engineering. | en_US |
dc.date.accessioned | 2015-12-03T20:56:44Z | |
dc.date.available | 2015-12-03T20:56:44Z | |
dc.date.copyright | 2015 | en_US |
dc.date.issued | 2015 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/100152 | |
dc.description | Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 191-196). | en_US |
dc.description.abstract | Two of the greatest challenges in MEMS are those of packaging and integration with CMOS technology. Development of solid state RF MEMS resonators in silicon, resonators that do not require any release etch step, eliminates the necessity for complex encapsulation methods and costly packaging. Such solid state solution could also enable direct integration into front-end-of-line (FEOL) processing in CMOS, making these devices an attractive choice for on-chip signal generation and signal processing. This thesis discusses the physics, design considerations, and process developments to build such solid state MEMS resonators in silicon, showing a series of incremental stages of the prototyping of such devices. The major challenge of building solid state MEMS resonators lies in maintaining comparable device performance relative to released ones, especially quality factor Q. Energy localization structures, such as acoustic Bragg reflectors (ABRs) are implemented for such solid state resonators to maintain high Q and suppress spurious modes. Towards the goal of high aspectratio structures that have the capability of direct CMOS integration, deep trench (DT) capacitor based MEMS resonators are studied and demonstrated. This concept enables high Q, low loss multi-GHz resonators in a simple, robust manufacturing process. | en_US |
dc.description.statementofresponsibility | by Wentao Wang. | en_US |
dc.format.extent | 196 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mechanical Engineering. | en_US |
dc.title | Solid State MEMS Resonators in Silicon | en_US |
dc.title.alternative | Solid State Microelectromechanical systems Resonators in Silicon | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph. D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.identifier.oclc | 930151901 | en_US |