Show simple item record

dc.contributor.advisorDimitris Bertsimas.en_US
dc.contributor.authorSilberholz, Johnen_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2016-02-29T13:59:20Z
dc.date.available2016-02-29T13:59:20Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/101290
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2015.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 139-156).en_US
dc.description.abstractCancer is a leading cause of death both in the United States and worldwide. In this thesis we use machine learning and optimization to identify effective treatments for advanced cancers and to identify effective screening strategies for detecting early-stage disease. In Part I, we propose a methodology for designing combination drug therapies for advanced cancer, evaluating our approach using advanced gastric cancer. First, we build a database of 414 clinical trials testing chemotherapy regimens for this cancer, extracting information about patient demographics, study characteristics, chemotherapy regimens tested, and outcomes. We use this database to build statistical models to predict trial efficacy and toxicity outcomes. We propose models that use machine learning and optimization to suggest regimens to be tested in Phase II and III clinical trials, evaluating our suggestions with both simulated outcomes and the outcomes of clinical trials testing similar regimens. In Part II, we evaluate how well the methodology from Part I generalizes to advanced breast cancer. We build a database of 1,490 clinical trials testing drug therapies for breast cancer, train statistical models to predict trial efficacy and toxicity outcomes, and suggest combination drug therapies to be tested in Phase II and III studies. In this work we model differences in drug effects based on the receptor status of patients in a clinical trial, and we evaluate whether combining clinical trial databases of different cancers can improve clinical trial toxicity predictions. In Part III, we propose a methodology for decision making when multiple mathematical models have been proposed for a phenomenon of interest, using our approach to identify effective population screening strategies for prostate cancer. We implement three published mathematical models of prostate cancer screening strategy outcomes, using optimization to identify strategies that all models find to be effective.en_US
dc.description.statementofresponsibilityby John Silberholz.en_US
dc.format.extent156 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titleAnalytics for Improved Cancer Screening and Treatmenten_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center.en_US
dc.identifier.oclc938821100en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record