MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Small-scale Advanced Thermo-Adsorptive Battery prototype

Author(s)
Umans, Ari S
Thumbnail
DownloadFull printable version (12.56Mb)
Alternative title
Small-scale ATB prototype
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Evelyn N. Wang.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A significant effort is underway to develop an adsorption-driven system with the capacity to replace the heating, ventilation and air-conditioning (HVAC) system in an electric vehicle. This Advanced Thermo-Adsorptive Battery (ATB) system uses novel adsorbent materials and methods of optimizing transport properties, without which the desired energy and power densities are unattainable. The work in this thesis runs parallel to that effort, with the development of a small-scale version of the ATB. Two novel prototype designs are discussed. The first, though never fully operational, was an attempt to demonstrate the potential of ATB technology to be scaled to meet countless heating and cooling applications. The second prototype was designed to be a system for testing aspects of ATB operation on a small scale. This prototype uses small quantities of adsorbents, reducing material costs and shortening time scales, and has a great deal of operating flexibility, enabling a number of system conditions to be parametrically studied. Testing and experimental procedures have been developed, and preliminary experimental data have been used to ensure proper prototype operation. This prototype will continue to be used as a tool to characterize ATB system operation and aid in understanding the technology.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 57-58).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/101484
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.