Show simple item record

dc.contributor.advisorEvelyn N. Wang.en_US
dc.contributor.authorUmans, Ari Sen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2016-03-03T21:04:03Z
dc.date.available2016-03-03T21:04:03Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/101484
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 57-58).en_US
dc.description.abstractA significant effort is underway to develop an adsorption-driven system with the capacity to replace the heating, ventilation and air-conditioning (HVAC) system in an electric vehicle. This Advanced Thermo-Adsorptive Battery (ATB) system uses novel adsorbent materials and methods of optimizing transport properties, without which the desired energy and power densities are unattainable. The work in this thesis runs parallel to that effort, with the development of a small-scale version of the ATB. Two novel prototype designs are discussed. The first, though never fully operational, was an attempt to demonstrate the potential of ATB technology to be scaled to meet countless heating and cooling applications. The second prototype was designed to be a system for testing aspects of ATB operation on a small scale. This prototype uses small quantities of adsorbents, reducing material costs and shortening time scales, and has a great deal of operating flexibility, enabling a number of system conditions to be parametrically studied. Testing and experimental procedures have been developed, and preliminary experimental data have been used to ensure proper prototype operation. This prototype will continue to be used as a tool to characterize ATB system operation and aid in understanding the technology.en_US
dc.description.statementofresponsibilityby Ari S. Umans.en_US
dc.format.extent58 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleSmall-scale Advanced Thermo-Adsorptive Battery prototypeen_US
dc.title.alternativeSmall-scale ATB prototypeen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc938928069en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record