Show simple item record

dc.contributor.advisorGareth H. McKinley.en_US
dc.contributor.authorSaranadhi, Dhananjai (Dhananjai V.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2016-03-03T21:04:11Z
dc.date.available2016-03-03T21:04:11Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/101486
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 132-139).en_US
dc.description.abstractSuperhydrophobic surfaces have been shown to trap a pocket of air (or a "plastron") in between the features of their rough texture when submerged in water. A partial slip condition is created at the interface between the water and the submerged body, allowing for a reduction in skin friction drag. I begin by identifying and fabricating several superhydrophobic surfaces, and testing their ability to reduce skin friction in turbulent flows using a bespoke Taylor-Couette apparatus. These superhydrophobic surfaces possess different surface topographies and chemistry, and exhibit different amount of drag reduction, leading to a deeper investigation of the role of surface chemistry and the roughness on the robustness of the plastron. The mean square slope as the driving roughness parameter in promoting plastron stability, and suggest methods by which it may be increased in order to optimize drag-reducing performance. The air plastron captured by a passive superhydrophobic surface represents one way of creating a slip boundary condition. An active approach can be used to augment slip at the boundary. With this approach, a submerged body is heated past its Leidenfrost temperature to form a thick, continuous film of steam between itself and the water. I continue to employ superhydrophobic surfaces, but now exploit their unique heat transfer properties (i.e. the insulation to heat transfer provided by the minimal contact area between the body and the surrounding water) to drastically reduce the Leidenfrost Temperature and Critical Heat Flux, and by extension the energy input required to create and sustain such a boiling film. In the active case, vapor film completely envelops the heated body and is thicker than a typical passive plastron, which allows for a significant increase in obtained drag reduction relative to a passive superhydrophobic surface. I design and fabricate a mechanism by which a Taylor-Couette rotor can be heated past its Leidenfrost point and continuously supplied with power to maintain a boiling film under rotation rates of 60 rad/s. The results show that skin friction can be reduced by over 90% relative to an unheated superhydrophobic surface at Re = 52,200, and I derive a boundary layer and slip theory to fit the data to a model that calculates a slip length of 1.04 ± 0.3 mm. This indicates that the boiling film has a thickness of 37 ± 9.5 [mu]m, which is consistent with literature.en_US
dc.description.statementofresponsibilityby Dhananjai V. Saranadhi.en_US
dc.format.extent139 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titlePassive and active approaches to sustained turbulent hydrodynamic drag reduction using superhydrophobic surfacesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc938932823en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record