Show simple item record

dc.contributor.authorKellis, Manolisen_US
dc.contributor.authorGalagan, Jamesen_US
dc.coverage.temporalFall 2008en_US
dc.date.issued2008-12
dc.identifier6.047-Fall2008
dc.identifierlocal: 6.047
dc.identifierlocal: 6.878
dc.identifierlocal: IMSCP-MD5-ce3a7d8d7658d09e9a6be6fb1995f0bb
dc.identifier.urihttp://hdl.handle.net/1721.1/103560
dc.description.abstractThis course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include: Genomes: biological sequence analysis, hidden Markov models, gene finding, RNA folding, sequence alignment, genome assembly Networks: gene expression analysis, regulatory motifs, graph algorithms, scale-free networks, network motifs, network evolution Evolution: comparative genomics, phylogenetics, genome duplication, genome rearrangements, evolutionary theory, rapid evolutionen_US
dc.languageen-USen_US
dc.relationen_US
dc.rights.uriUsage Restrictions: This site (c) Massachusetts Institute of Technology 2016. Content within individual courses is (c) by the individual authors unless otherwise noted. The Massachusetts Institute of Technology is providing this Work (as defined below) under the terms of this Creative Commons public license ("CCPL" or "license") unless otherwise noted. The Work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license is prohibited. By exercising any of the rights to the Work provided here, You (as defined below) accept and agree to be bound by the terms of this license. The Licensor, the Massachusetts Institute of Technology, grants You the rights contained here in consideration of Your acceptance of such terms and conditions.en_US
dc.rights.uriUsage Restrictions: Attribution-NonCommercial-ShareAlike 3.0 Unporteden_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.subjectcomputational biologyen_US
dc.subjectalgorithmsen_US
dc.subjectmachine learningen_US
dc.subjectbiologyen_US
dc.subjectbiological datasetsen_US
dc.subjectgenomicsen_US
dc.subjectproteomicsen_US
dc.subjectgenomesen_US
dc.subjectsequence analysisen_US
dc.subjectsequence alignmenten_US
dc.subjectgenome assemblyen_US
dc.subjectnetwork motifsen_US
dc.subjectnetwork evolutionen_US
dc.subjectgraph algorithmsen_US
dc.subjectphylogeneticsen_US
dc.subjectcomparative genomicsen_US
dc.subjectpythonen_US
dc.subjectprobabilityen_US
dc.subjectstatisticsen_US
dc.subjectentropyen_US
dc.subjectinformationen_US
dc.title6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution, Fall 2008en_US
dc.title.alternativeComputational Biology: Genomes, Networks, Evolutionen_US
dc.typeLearning Object
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record