Show simple item record

dc.contributor.advisorDina Katabi.en_US
dc.contributor.authorSuresh Kumar, Swarunen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-07-18T19:11:50Z
dc.date.available2016-07-18T19:11:50Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/103675
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 259-277).en_US
dc.description.abstractWireless networks are everywhere around us and form a big part of our day-to-day lives. In this dissertation, we address the key challenges and opportunities of modern wireless networks. First, perhaps our biggest expectation from modern wireless networks is faster communication speeds. However, state-of-the-art Wi-Fi networks continue to struggle in crowded environments - airports and hotel lobbies. The core reason is interference - Wi-Fi access points today avoid transmitting at the same time on the same frequency, since they would otherwise interfere with each other. This thesis describes OpenRF, a novel system that enables today's Wi-Fi access points to directly combat this interference and demonstrate significantly faster data-rates for real applications. In addition, it presents MoMIMO, which demonstrates how the natural mobility of mobile users can be used to further mitigate interference. Second, can we use the ubiquitous Wi-Fi infrastructure around us to deliver new services, beyond communication? In particular, this dissertation focuses on indoor positioning, a service that has grabbed the attention of the academia and industry. While GPS has revolutionized outdoor navigation, it does not work indoors. Past work that has explored this problem is either limited in accuracy with errors of several meters, or advocates complete overhaul of the infrastructure with massive antenna-array access points that do not exist on consumer devices. Inspired by radar systems, we present Ubicarse, the first purely-software indoor positioning system for existing Wi-Fi devices that achieves tens of cm in positioning accuracy. Further, we build on this design to develop LTEye, which reveals new insights on how location impacts the performance of commercial AT&T and Verizon LTE cellular networks in the indoor space. Finally, we demonstrate how the tools we develop for indoor positioning open up new connections between wireless networking and robotics, to improve communication and security in multi-robot networks.en_US
dc.description.statementofresponsibilityby Swarun Kumar.en_US
dc.format.extent277 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titlePushing the limits of wireless networksen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc953527686en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record