Show simple item record

dc.contributor.advisorRoy Welsch and Thomas Eagar.en_US
dc.contributor.authorBuelsing, Michael Ten_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2016-09-13T19:24:23Z
dc.date.available2016-09-13T19:24:23Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/104312
dc.descriptionThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2016. In conjunction with the Leaders for Global Operations Program at MIT.en_US
dc.descriptionThesis: S.M. in Engineering Systems, Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016. In conjunction with the Leaders for Global Operations Program at MIT.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (page 51).en_US
dc.description.abstractThe quality of Caterpillar's welds is becoming increasingly important as their equipment is made leaner with the goals of increased performance, lighter weight and lower unit cost. Due to the inherently variable nature of arc welding, non-destructive weld evaluation is critical to ensure that welding processes remain in control, and that defective parts are quarantined and repaired before being released downstream. The "conventional" ultrasonic weld inspection technology in use at present has several limitations: -- Areas within common joint configurations cannot be adequately inspected due to geometry constraints; -- Discontinuity evaluation requires subjective real-time human interpretation by highly trained operators; -- The data produced by the instrumentation is unconducive to recording for off-line analysis; -- Imprecise defect sizing leads to Type I and Type II inspection errors - the unnecessary rework of good parts, and the inappropriate release of non-complying parts. This project addressed these limitations of conventional ultrasonic weld inspection by identifying and evaluating alternative commercially available technologies and by initiating the internal development of specific proprietary technologies tailored to Caterpillar's needs. Through collaboration with Caterpillar's non-destructive evaluation (NDE) community, as well as outside vendors, a technology known as "phased array" was selected and validated in the laboratory and production environments. Although phased array was not new to Caterpillar, its adoption within the production facilities had previously been limited.en_US
dc.description.statementofresponsibilityby Michael T. Buelsing.en_US
dc.format.extent61 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectMechanical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleInvesting in quality : identifying the true value of advanced weld inspection technologyen_US
dc.title.alternativeIdentifying the true value of advanced weld inspection technologyen_US
dc.typeThesisen_US
dc.description.degreeM.B.A.en_US
dc.description.degreeS.M. in Engineering Systemsen_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentSloan School of Management
dc.identifier.oclc958279014en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record