MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Strategic analysis of technical, commercial, and regulatory influences on the commercialization of hydrogen fuel cell vehicles

Author(s)
Millard, David A. (David Anthony)
Thumbnail
DownloadFull printable version (5.227Mb)
Other Contributors
Leaders for Global Operations Program.
Advisor
David R. Keith and Wai K. Cheng.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Increasing regulatory pressures are being applied to automotive manufacturers requiring them to reduce the negative impacts that their vehicles have on the environment. In response to these regulations, and evolving consumer preferences, manufacturers are heavily invested in identifying technologies to increase fuel economy and reduce greenhouse gas emissions. Alternative propulsion technologies, such as fuel cells, are of tremendous interest to provide these benefits. However, factors including refueling infrastructure requirements, technology costs, and consumer willingness-to-consider all significantly impact the commercial viability of hydrogen fuel cell vehicles (HFCVs). I develop a system dynamics model to explore the temporal importance of critical factors required to build a market for HFCVs that is sustainable in the long-term. This methodology allows for the following: 1) Infrastructure: Identification of optimal hydrogen infrastructure growth necessary in order to support HFCV adoption and minimize required fueling stations. Additionally, the conditions in which external construction and operational support may give way to organic growth can be determined. 2) HFCV Ownership Costs: A time-dependent characterization of vehicle price and ownership subsidies can be ascertained to facilitate adoption. 3) Familiarity Accumulation: Assessment of the marketing investment necessary to yield desired HFCV adoption while minimizing costs. 4) Regulatory Requirements: Projection of compliance with Zero Emission Vehicle (ZEV) Action Plan requirements, highlighting potential impacts and possible mitigation measures.
Description
Thesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2016. In conjunction with the Leaders for Global Operations Program at MIT.
 
Thesis: S.M. in Engineering Systems, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, 2016. In conjunction with the Leaders for Global Operations Program at MIT.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 46-47).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/104392
Department
Leaders for Global Operations Program at MIT; Massachusetts Institute of Technology. Engineering Systems Division; Massachusetts Institute of Technology. Institute for Data, Systems, and Society; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management., Institute for Data, Systems, and Society., Engineering Systems Division., Leaders for Global Operations Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.