MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Department of Aeronautics and Astronautics
  • Gas Turbine Laboratory
  • Gas Turbine Laboratory Reports
  • View Item
  • DSpace@MIT Home
  • Department of Aeronautics and Astronautics
  • Gas Turbine Laboratory
  • Gas Turbine Laboratory Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of three-dimensional compressible turbulent boundary layers on transonic compressor blades

Author(s)
Usab, William J., Jr. (William James)
Thumbnail
Download915605847.pdf (4.491Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Metadata
Show full item record
Abstract
A small crossflow approximation to the full three dimensional compressible turbulent boundary layer equations for turbomachine blade rows is developed by taking advantage of the nature of blade geometry and inviscid flow field when an intrinsic coordinate system is used. The resulting system of equations is solved by Keller's box scheme, providing the capability of numerically calculating compressible turbulent boundary layers on transonic compressor blades to a good approximation. The scheme is checked with two known solutions of incompressible flow over unloaded zero thickness blades. It is then applied to the first stage of a NASA Low-aspect-ratio rotor blade for which the inviscid flow field is available. The results give insight to the three-dimensional boundary layer character of transonic compressor blades, caused by an imbalance of centrifugal and Coriolis forces within the boundary layer.
Description
Includes bibliographical references
Date issued
c1980
URI
http://hdl.handle.net/1721.1/104668
Publisher
c1980
Series/Report no.
GT & PDL report ; no. 152.

Collections
  • Gas Turbine Laboratory Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.