MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nearly tight oblivious subspace embeddings by trace inequalities

Author(s)
Cohen, Michael Benjamin.
Thumbnail
DownloadFull printable version (248.6Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Jonathan Kelner.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We present a new analysis of sparse oblivious subspace embeddings, based on the "matrix Chernoff" technique. These are probability distributions over (relatively) sparse matrices such that for any d-dimensional subspace of Rn, the norms of all vectors in the subspace are simultaneously approximately preserved by the embedding with high probability-typically with parameters depending on d but not on n. The families of embedding matrices considered here are essentially the same as those in [NN13], but with better parameters (sparsity and embedding dimension). Because of this, this analysis essentially serves as a "drop-in replacement" for Nelson-Nguyen's, improving bounds on its many applications to problems such as as least squares regression and low-rank approximation. This new method is based on elementary tail bounds combined with matrix trace inequalities (Golden-Thompson or Lieb's theorem), and does not require combinatorics, unlike the Nelson-Nguyen approach. There are also variants of this method that are even simpler, at the cost of worse parameters. Furthermore, the bounds obtained are much tighter than previous ones, matching known lower bounds up to a single log(d) factor in embedding dimension (previous results had more log factors and also had suboptimal tradeoffs with sparsity).
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 17-18).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105577
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.