Show simple item record

dc.contributor.advisorThomas Heldt.en_US
dc.contributor.authorMatthews, Jonathan Martinen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-12-22T15:17:04Z
dc.date.available2016-12-22T15:17:04Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/105974
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 69-70).en_US
dc.description.abstractMonitoring of intracranial pressure (ICP) is key in many neurological conditions for diagnosis and guiding therapy. Current monitoring methods are highly invasive, limiting their use to the most critically ill patients. Based on a previously developed approach to noninvasive ICP estimation from cerebral blood flow velocity (CBFV) and arterial blood pressure (ABP) waveforms, I have implemented the algorithm on an embedded device (LPC4337 microcontroller) that can produce real-time estimates of ICP from noninvasively-obtained ABP and CBFV measurements. I have also fabricated a medical device prototype complete with peripheral interfaces for ABP and CBFV monitoring hardware and display and recording functionality for clinical use and post-acquisition analysis. The current device produces a mean estimate of ICP once per minute and can perform the necessary computations in 410 ms, on average. Real-time estimates of noninvasive ICP differed from the original batch-mode MATLAB implementation of the algorithm by 0.34 mmHg (RMSE). The contributions of this thesis take a step toward the goal of real-time noninvasive ICP estimation in a variety of clinical settings.en_US
dc.description.statementofresponsibilityby Jonathan Martin Matthews.en_US
dc.format.extent70 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAn embedded device for real-time noninvasive intracranial pressure estimationen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc965641277en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record