Show simple item record

dc.contributor.advisorNicholas Roy.en_US
dc.contributor.authorWare, John (John Welling)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2017-02-22T19:01:28Z
dc.date.available2017-02-22T19:01:28Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/107056
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 105-113).en_US
dc.description.abstractThis thesis presents two distinct bodies of work concerning quadrotor flight in urban wind fields. The first attempts to characterize a quadrotor's ability to exploit urban wind fields for improved flight performance. A computational fluid dynamics model is used to obtain a wind field estimate given a 3D model of the environment and a prevailing wind estimate. Minimum-energy trajectories are then found through the environment using an empirically derived power consumption model for a specific quadrotor platform. It is shown in simulation that a minimum-energy planner aware of the wind field outperforms a naive, wind-unaware planner over metrics such as total energy consumption, time to goal, and failure rate. The second component of the work focuses on the development of an onboard wind sensor for quadrotors. Although it is not yet clear how to integrate these measurements into a global wind field estimate or use them in a planner, it is intuitive that on-board measurements could inform the local wind field estimate or validate the global one. Accordingly, an effort was made to integrate an existing microelectromechanical flow sensor into a quadrotor platform. Initial results from full-scale tests in the Wright Brothers wind tunnel at MIT demonstrate the the sensor's performance in flight and hover conditions.en_US
dc.description.statementofresponsibilityby John Ware.en_US
dc.format.extent113 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleAn analysis of quadrotor flight in the urban canopy layeren_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc971022922en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record