MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust multi-contact dynamical motion planning using contact wrench set

Author(s)
Dai, Hongkai, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (13.70Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Russ Tedrake.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we seek to plan a robust motion for robot with multiple non-coplanar contact on the environment. When the robot interacts with the environment through contact, it relies on the contact forces to generate the desired acceleration. The contact forces have to satisfy some physical constraints, such as lying within the friction cones. These constraints limit the robot acceleration. The robustness of the motion can be measured as the margin to the boundary of these constraints. By planning motion with a large preserved margin, we enable the robot to withstand large disturbance in the online motion execution. In this thesis, we adopt the notion of contact wrench set to approximate the constraints on the robot dynamics. The margin of such set measures the capability of the motion to perfectly resist external wrench disturbance. We plan robust motion to increase this contact wrench set margin. We present two planners to improve this robustness metric. For the first simple-model planner, we pre-specify the contact locations, and it generates a Center of Mass trajectory and an angular momentum trajectory, by solving a convex optimization problem. We show that this planner has similar output as the widely-used walking pattern generator that relies on Zero Moment Point (ZMP) on flat ground. Moreover, it can plan feasible motion on uneven ground with friction cone limits, while the ZMP planner fails. For the second planner with robot whole-body model, we will search for the contact location and the robot whole-body motion simultaneously. We show that we can improve the robustness metric through certain non-convex optimization techniques. We apply our planner to three problems: 1) force closure grasp optimization, 2) static posture optimization, 3) trajectory optimization, achieving improved performance for all of them.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 127-142).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/107328
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.