MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Amplifier and data converter techniques for low power sensor interfaces

Author(s)
Yaul, Frank M
Thumbnail
DownloadFull printable version (14.98Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Anantha P. Chandrakasan.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Sensor interfaces circuits are integral components of wireless sensor nodes, and improvements to their energy-efficiency help enable long-term medical and industrial monitoring applications. This thesis explores both analog and algorithmic energy-saving techniques in the sensor interface signal chain. First, a data-dependent successive-approximation algorithm is developed and is demonstrated in a low-power analog-to-digital converter (ADC) implementation. When averaged over many samples, the energy per conversion and number of bitcycles per conversion used by this algorithm both scale logarithmically with the activity of the input signal, with each N-bit conversion using between 2 and 2N+1 bitcycles, compared to N for conventional binary SA. This algorithm reduces ADC power consumption when sampling signals with low mean activity, and its effectiveness is demonstrated on an electrocardiogram signal. With a 0.6V supply, the 10-bit ADC test chip has a maximum sample rate of 16 kHz and an effective number of bits (ENOB) of 9.73b. The ADC's Walden Figure of Merit (FoM) ranges from 3.5 to 20 fJ/conversion-step depending on the input signal activity. Second, an ultra-low supply voltage amplifier stage is developed and used to create an energy-efficient low-noise instrumentation amplifier (LNIA). This chopper LNIA uses a 0.2V-supply inverter-based input stage followed by a 0.8V-supply folded-cascode common-source stage. The high input-stage current needed to reduce the input-referred noise is drawn from the 0.2V supply, significantly reducing power consumption. The 0.8V stage provides high gain and signal swing, improving linearity. Biasing and common-mode rejection techniques for the 0.2V-stage are also presented. The analog front-end (AFE) test chip incorporating the chopper LNIA achieves a power-efficiency figure (PEF) of 1.6 with an input noise of 0.94 [mu]VRMS, integrated from 0.5 to 670 Hz. Human biopotential signals are measured using the AFE.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 151-157).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/107360
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.