Show simple item record

dc.contributor.advisorRajeev J. Ram.en_US
dc.contributor.authorMehta, Karan K. (Karan Kartik)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2017-05-11T19:06:48Z
dc.date.available2017-05-11T19:06:48Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/108849
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages [165]-183).en_US
dc.description.abstractIndividual atomic ions confined in designed electromagnetic potentials and manipulated via lasers are strong candidates as physical bases for quantum information processing (QIP). This is in large part due to their long coherence times, in distinguishability, and strong Coulomb interactions. Much work in recent years has utilized these properties to implement increasingly precise quantum operations essential for QIP, as well as to conduct increasingly sophisticated experiments on few-ion systems. Many questions remain however regarding how to implement the significant classical apparatus required to control and measure many ions (and indeed any physical qubit under study) in a scalable way that furthermore does not compromise qubit quality. This work draws on techniques in integrated optics to address this question. Planar-fabricated waveguides and gratings integrated with planar ion traps are demonstrated to allow optical addressing of individual 88Sr+ions 50 [mu]m above the chip surface with distraction-limited focused beams, with advantages in stability and scalability. Motivated by the requirement for low crosstalk in qubit addressing, we show also that intuitively designed devices can generate precisely tailored intensity profiles at the ion locations, with distraction-limited side lobe intensities characterized to the 5x10-6 level in relative intensity up to 25 [mu]m from the focus. Such devices can be implemented alongside complex systems in complementary metal-oxide-semiconductor (CMOS) processes. We show in addition that the multiple patternable metal layers present in CMOS processes can be used to create complex planar ion traps with performance comparable to simple single-layer traps, and that CMOS silicon avalanche photodiodes may be employed for scalable quantum state readout. Finally we show initial results on integrated electro-optic modulators for visible light. These results open possibilities for experiments with trapped ions in the short term, and indicate routes to achieving large-scale systems of thousands or more ions in the future. Though ion qubits may seem isolated from scalable solid-state technologies, it appears this apparent isolation may uniquely allow a cooperation with complex planar-fabricated optical and electronic systems without introducing additional decoherence.en_US
dc.description.statementofresponsibilityby Karan K. Mehta.en_US
dc.format.extent183 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleIntegrated optical quantum manipulation and measurement of trapped ionsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc986522026en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record