MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An analytics approach to problems in health care

Author(s)
Kung, Jerry Lai
Thumbnail
DownloadFull printable version (1.277Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Dimitris Bertsimas.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Health care expenditures in the United States have been increasing at unsustainable rates for more than thirty years with no signs of abating. Decisions to accept or reject deceased-donor kidneys offered to patients on the kidney transplantation wait-list currently rely on physician experience and intuition. Scoring rules to determine which end-stage liver disease patients are in most dire need of immediate transplantation have been haphazardly designed and reactively modified in an attempt to decrease waitlist mortality and increase fairness for cancer patients. For each of the above problem settings, we propose a framework that takes real-world data as input and draws upon modern data analytics methods ranging from mixed integer linear optimization to predictive machine learning to yield actionable insights that can add a significant edge over current practice. We describe an approach that, given insurance claims data, leads conservatively to a 10% reduction in health care costs in a study involving a large private US employer. Using historical data for patients on the kidney waitlist and organ match runs, we build a model that achieves an out-of-sample AUC of 0.87 when predicting whether or not a patient will receive a kidney of a particular quality within three, six, or twelve months. Given historical data for patients on the liver waitlist, we create a unified model that is capable of averting an additional 25% of adverse events in simulation compared to current practice without disadvantaging cancer patients.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2017.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 99-102).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/112358
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.