Show simple item record

dc.contributor.advisorDimitris Bertsimas.en_US
dc.contributor.authorKung, Jerry Laien_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2017-12-05T16:24:22Z
dc.date.available2017-12-05T16:24:22Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/112358
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2017.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 99-102).en_US
dc.description.abstractHealth care expenditures in the United States have been increasing at unsustainable rates for more than thirty years with no signs of abating. Decisions to accept or reject deceased-donor kidneys offered to patients on the kidney transplantation wait-list currently rely on physician experience and intuition. Scoring rules to determine which end-stage liver disease patients are in most dire need of immediate transplantation have been haphazardly designed and reactively modified in an attempt to decrease waitlist mortality and increase fairness for cancer patients. For each of the above problem settings, we propose a framework that takes real-world data as input and draws upon modern data analytics methods ranging from mixed integer linear optimization to predictive machine learning to yield actionable insights that can add a significant edge over current practice. We describe an approach that, given insurance claims data, leads conservatively to a 10% reduction in health care costs in a study involving a large private US employer. Using historical data for patients on the kidney waitlist and organ match runs, we build a model that achieves an out-of-sample AUC of 0.87 when predicting whether or not a patient will receive a kidney of a particular quality within three, six, or twelve months. Given historical data for patients on the liver waitlist, we create a unified model that is capable of averting an additional 25% of adverse events in simulation compared to current practice without disadvantaging cancer patients.en_US
dc.description.statementofresponsibilityby Jerry Lai Kung.en_US
dc.format.extent102 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titleAn analytics approach to problems in health careen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center.en_US
dc.identifier.oclc1008591884en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record