MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measuring mass changes in single suspended and adherent cells, with applications to personalized medicine in Glioblastoma Multiforme (GBM)

Author(s)
Chou, Nigel Shijie
Thumbnail
DownloadFull printable version (9.889Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biological Engineering.
Advisor
Scott R. Manalis.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The increased precision offered by developments in suspended microchannel resonator (SMR) technology opens the possibility for measuring small mass changes in cells. Mass accumulation rate (MAR) measurements in single suspended cells over short periods of time have the potential for characterizing heterogeneous collections of tumorigenic cells and serve as a functional marker for the effects of anti-cancer drugs. In this thesis we adapt mass accumulation measurements for use in Glioblastoma Multiforme (GBM) patient-derived cell lines, exploring the heterogeneity between and within patient tumors, and validating the measurement as a predictor of drug susceptibility with response times on the order of 24 to 48 hours using an experimental MDM2 inhibitor. While MAR measurements can be performed on suspended single cells with high precision, it has not yet been adapted for measuring the growth of adherent cells. We develop a technique to measure mass accumulation in cells adhered to the inner surface of the resonator channel. To overcome challenges inherent in such a measurement, we use infrared imaging and multiple resonant modes to reveal the cell's position in the SMR, and utilize differential measurements from a second cantilever to account for frequency drift.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 117-119).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/112498
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Biological Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.