Show simple item record

dc.contributor.advisorMarin Soljačić.en_US
dc.contributor.authorSkirlo, Scott Alexanderen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Physics.en_US
dc.date.accessioned2017-12-05T19:16:29Z
dc.date.available2017-12-05T19:16:29Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/112519
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 163-175).en_US
dc.description.abstractThis thesis focuses on a wide range of contemporary topics in modern electromagnetics and technology including topologically protected one-way modes, integrated photonic LIDAR, and optical neural networks. First, we numerically investigate large Chern numbers in photonic crystals and explore their origin from simultaneously gapping multiple band degeneracies. Following this, we perform microwave transmission measurements in the bulk and at the edge of ferrimagnetic photonic crystals. Bandgaps with large Chern numbers of 2, 3, and 4 are present in the experimental results 'which show excellent agreement with theory. We measure the mode profiles and Fourier transform them to produce dispersion relations of the edge modes, whose number and direction match our Chern number calculations. We use these waveguides to realize reflectionless power splitters and outline their application to general one-way circuits. Next we create a new chip-scale LIDAR architecture in analogy to planar RF lenses. Instead of relying upon many continuously tuned thermal phase shifters to implement nonmechanical beam steering, we use aplanatic lenses excited in their focal plane feeding ID gratings to generate discrete beams. We design devices which support up to 128 resolvable points in-plane and 80 resolvable points out-of-plane, which are currently being fabricated and tested. These devices have many advantages over conventional optical phased arrays including greatly increased optical output power and decreased electrical power for in-plane beamforming. Finally we explore a new approach for implementing convolutional neural networks through an integrated photonics circuit consisting of Mach-Zehnder Interferometers, optical delay lines, and optical nonlinearity units. This new platform, should be able to perform the order of a thousand inferences per second, at [mu]J power levels per inference, with the nearest state of the art ASIC and GPU competitors operating 30 times slower and requiring three orders of magnitude more power.en_US
dc.description.statementofresponsibilityby Scott Alexander Skirlo.en_US
dc.format.extent175 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titlePhotonics for technology : circuits, chip-scale LIDAR, and optical neural networksen_US
dc.title.alternativeCircuits, chip-scale LIDAR, and optical neural networksen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc1012937987en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record