MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A framework for visualizing hardness reductions to grid-based games

Author(s)
Shen, Jeffrey David
Thumbnail
DownloadFull printable version (769.1Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Erik Demaine.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Hardness proofs for grid-based games often use gadgets connected together to represent computational problems. We present an open-source framework to implement these reductions, producing actual game instances out of hard computational instances. Our framework first converts the input problem instance into a graph, then draws the graph in an integer grid (a kind of orthogonal graph drawing problem), and finally replaces nodes and edges in this layout with gadgets. To ensure that the final output is aligned, we use linear programming to constrain how gadgets connect. We apply this framework to Circuit SAT and use it to show examples of reductions to Akari and Minesweeper. Lastly, we describe possible future optimizations to the framework to make the output smaller and how to extend it for a wider variety of games.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 67-70).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/113165
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.